Modification of phospholipids

Identification

Key words: Phospholipids (lecithin), emulsifiers, phospholipase, Lipase

Latest version: 2012/07/17
Completed by: DIL

How does it work?

Primary objective: Phospholipids are modified to obtain products possessing improved technological, physicochemical and nutritional properties. This includes in particular improvement of emulsifying properties, increase of dispersibility in aqueous systems or obtaining of nutritionally valuable phospholipid fractions.

Working principle: The principle is based on modification of the structure of phospholipid molecules or on separation of individual components or component groups from the matrix. The modification can be achieved by physical, chemical and enzymatic (Enzymatic modification of phospholipids) methods.

Physical methods:
1. Fractionation by separation of neutral and polar lipids (de-oiling) [1]
2. Fractionation of de-oiled lecithin by alcohols due to a different solubility of phospholipid fractions [2]
3. Coating of proteins by phospholipids during spray drying in order to obtain powdered products having 30-50 % phospholipid fractions [1]

Chemical methods:
1. Chemical hydrolysis for release of fatty acids to modify the hydrophobicity of phospholipid molecules making them more hydrophilic
2. Hydrogenation of unsaturated fatty acids to obtain more saturated molecules
3. Hydroxylation of unsaturated fatty acids to obtain more hydrophilic molecules
4. Acylation of the NH2-group of the zwitterionic phosphatidylethanolamine (PE) to obtain a negatively charged phospholipid molecule [1,2,3]

Enzymatic methods:
1. Enzymatic hydrolysis for release of fatty acids by phospholipases A1, A2 in order to obtain phospholipids with increased hydrophilicity (lysophospholipids) [4,5]
2. Enzymatic hydrolysis by phospholipase D to generate phospholipid molecules with modified head group [6]
3. Enzymatic hydrolysis by phospholipase C to obtain a diacyl glycerol (DAG) [7]
4. Enzymatic release of fatty acids by Lipase to obtain lysophospholipids [7,8]

Images

Additional effects: Obtaining phospholipids with a high purity

Important process parameters: temperature, pH-value, treatment time, ion concentration, enzyme dosage, solvent

Important product parameters: water content
What can it be used for?

Products
Lecithin blends, egg yolk, dairy products, bakery products, additives, vegetable oil

Operations
Separation, structure forming, conversion, stabilizing

Solutions for shortcomings
Food industry requirements for natural emulsifiers with specific properties. Phospholipids with modified structures may be applied for producing of nutraceuticals

What can it NOT be used for?

Products
Products naturally not containing lecithin because addition of phospholipids must be declared (in EU as E322). So, food additives declared as E-number could decrease consumer acceptance of such products

Operations
Application of chemical modification in foods is limited.
Restricted application of phospholipases due to source and product specificity of the enzymes

Other limitations
Chemical and physical modification is rarely selective and difficult to control.
Scale-up problems for enzymatic modification

Risks or hazards
It is difficult to totally control chemical modification, so side-processes can take place leading to undesired products, for example undesired distribution of fatty acids in the product can occur.

Implementation

Maturity
The technology is available on industrial scale. Products are used in food, pharmaceuticals, plastics, coatings, cosmetics etc. However, Enzymatic modification of phospholipids by phospholipase D has been applied only in lab-scale.

Modularity/Implementation
Phospholipases have to be permanently optimised by protein engineering in order to meet specific needs of the food industry, resulting in higher production costs

Consumer aspects
Non-GMO lecithin should be used. Additionally, phospholipases originated from genetically modified microorganisms may be critical

Legal aspects
The Codex Alimentarius Committee of the FAO/WHO lists food-grade lecithins with recommended purity criteria for worldwide use. The EU-approved food additive number E322 comprise physically fractionated and enzymatically hydrolyzed lecithins [2].While hydroxylation is allowed in the US for baking applications none of the products resulting from these processes has food grade status in Europe. These products are limited to applications in cosmetics and pharmaceuticals [3]. For this reason, Enzymatic modification of phospholipids is preferred

Environmental aspects
Compared to physical or chemical methods, enzymatic approach (Enzymatic modification of phospholipids) allows a better control of reactions, greatly reduces the consumption of toxic solvents, saves chemicals, energy and water due to mild reaction conditions, reduces waste and increases product yield [1,2].
Facilities that might be interesting for you

<table>
<thead>
<tr>
<th>Title</th>
<th>Institute/company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorium IRTA</td>
<td>IRTA</td>
</tr>
<tr>
<td>Clean room – Histocell</td>
<td>Noray</td>
</tr>
<tr>
<td>Video observation system for market research and product development tasks - Keki</td>
<td>NAIK EKI</td>
</tr>
</tbody>
</table>

Further Information

Institutes

DIL, TU München, Martin Luther Universität Halle Wittenberg, DTU Food, Texas A&M University

Companies

Lecithos Consulting, Lecipro Consulting, Unilever, Novozymes, Biocatalysts, Nestlé Research Centre

References
