Water-soluble natural yellow dye

Natural yellow dye

Identification

Key words
- phloridzin
- dye
- water-soluble
- yellow
- apple
- enzyme
- natural
- food colorant

Latest version
- 2013/09/05

Completed by
- INRA - IATE

How does it work?

Primary objective
- Water-soluble yellow dye suitable for food applications with improved properties (4)

Working principle
- Up to date, the most commonly used yellow dyes in the food industry have been tartrazin and curcumin, both showing disadvantages: tartrazin is targeted in the context of evolving food safety regulations in Europe and North America and curcumin has limited applications because of its low water solubility.
- A new water-soluble dye has been produced: Phloridzin Oxidation Products (POP).
- Phloridzin is a natural polyphenol specific to apples, which natural oxidation, in juices or ciders for example, leads to POP. (3)(5)
- To produce the dye, oxidation of phloridzin in apple pomace (= solid waste of juice production) has been triggered by enzymatic conversion, leading to a family of similar molecules that constitute the dye.
- The POP dye is highly water-soluble with a strong colouring capacity from bright yellow (pH < 5) to orange (pH > 6), see figure below (1)(2).

Images

Additional effects
- The POP dye can also be esterified in ethanol/HCl, leading to a 98% yield. Both the POP dye and its ethyl ester show free radical-scavenging activities comparable to those of well-known antioxidants such as ascorbic acid, trolox or (−)-epicatechin. (2) Therefore, they can be be used as antioxidative food additives.
- Besides food applications, the POP dye can also be used in cosmetics and hygiene. (1)

Important process parameters

Important product parameters
- The pH of the medium to be dyed will impact the final colour.
- Half saturation at pH 3 was obtained for a concentration close to 30 mg/L.
- POP is only weakly degraded by prolonged storage at ambient temperature (with minor variations depending on the pH) (2)
What can it be used for?

Products
Usable in all watery (more than fatty) food products

Operations
waste reuse

Solutions for short comings
use of natural dyes / natural colorants for food, cosmetics, pharma
use of waste, by-products
replacement of tartrazine, curcumine for watery matrices

What can it NOT be used for?

Products
fatty food products

Operations
Any other than waste reuse and/or dye extraction

Other limitations
the POP dye is not fat-soluble (1)
Maximum yield for POP (84%) is obtained only after 47 h of enzymatic reaction, the colourless precursor being the major contaminant (12%) (2)

Risks or hazards
Safety under assessment

Implementation

Maturity
The production process is internationally patented, and licenses are available through INRA Transfert. No license has been exploited so far (December 2012)

Modularity/Implementation
This technology can replace the existing water-soluble yellow dyes for food applications.

Consumer aspects
Interest for natural products

Legal aspects
The production process is internationally patented: WO2005/049598 (2005)
Safety under assessment
General legislation for dyes in food applications: EU directive 94/36/EC, EU regulation 1333/2008

Environmental aspects
Use of waste.
Enterzymatic reactions occur at low temperature compared to conventional chemical reactions, with no other solvent than water.

Facilities that might be interesting for you

warning.pngSome use of "<nowiki>[[</nowiki>" in your query was not closed by a matching "]]."

Further Information

Institutes
INRA - URC BFL

Companies
INRA Transfert
References

