Determination of foods’ total antioxidant capacity using the QUENCHER approach

Identification

Key words
- antioxidant capacity, direct measurement, food, Quencher approach, analytical tool

Latest version
- 2011/01/03

Completed by
- TTZ

How does it work?

Primary objective
- analytical tool to measure the antioxidant capacity of foods with insoluble components

Working principle
- Methods to measure antioxidant capacity are limited to soluble products. Therefore, foods with insoluble components need to be treated prior to measurement with chemical or enzymatic methods influencing their physical and chemical characteristics. Furthermore the extraction of antioxidants may be incomplete. Thus, the antioxidant capacity is most likely underestimated and not reliable.

The QUENCHER (QUick, Easy, New, CHEap and Reproducible) procedure works without previous extraction and hydrolysis. The solid sample is directly brought in contact with a reagent solution containing radicals. The radicals are quenched by antioxidants due to the contact at the solid-liquid interface and thereby a decolourization occurs. After centrifugation the supernatant can be spectrometrically measured. The antioxidant capacity is reversely proportional to the fluorescent signal.

File:QUENCHER procedure.pdf

Images

Additional effects
- Solid foods do not require any extraction and hydrolysis prior to antioxidant capacity measurement. more rapid than conventional methods

Important process parameters
- • surface area of the reacting solid: particles in the range of 140–60 mesh (0.1–0.3 mm) enable an acceptable reaction rate
- • choice of solvent: 50 % water, 50 % ethanol
- • contact time with the radical solution: ca 30 min

Important product parameters
- • water content: high-moisture foods should be lyophilized
- • foods with very high antioxidant capacity should be diluted with inert powdered cellulose to keep the linearity range of the method
What can it be used for?

Products
especially relevant for foods with insoluble parts with high antioxidant capacity (dietary-fiber-rich ingredients), which cannot be reliably measured for total antioxidant capacity with commercial methods but the analysis of liquid products is also possible after lyophilization

Operations
analysis of antioxidant capacity of food, during the whole processing chain

Solutions for shortcomings
time-saving and reliable analysis of total antioxidant capacity of soluble and insoluble food components

What can it NOT be used for?

Products
liquid or high moisture food products need to be lyophilized first to remove water
foods with very high antioxidant capacity should be diluted

Operations

Other limitations
freeze drying of high moisture food products might be time-consuming as well as energy-consuming
in some food matrices, the physical localization of antioxidants may impair the reaction

Risks or hazards
no risks

Implementation

Maturity
Any chemical mechanism described to measure the antioxidant capacity of foods can be adapted to direct QUENCHER procedure. The technique was successfully adapted to validated and commercially available assay kits (e.g. FRAP, ORAC).

Modularity /Implementation
The QUENCHER method is exemplified according to the popular and easy to use FRAP and ORAC assays using ABTS and DPPH but can also easily be adapted to other assays.

Equipment
Equipment according to the requirements described for FRAP, ORAC, ... assays

Consumer aspects
Antioxidants play an important role in the body's defense system. Antioxidant-rich diets are associated with a lower incidence of cardiovascular disease, cancers, and age-related degenerative processes. The direct measurement of total antioxidant capacity represents a useful tool to predict the health potential of antioxidant-rich products.

Legal aspects
Official reference methods are based upon the analysis of antioxidant compounds: e.g. fatty acids according to the analysis by gas chromatography of methyl esters of fatty acid. (ISO 5508:1990)

Environmental aspects
energy-consuming lyophilization process
Facilities that might be interesting for you

<table>
<thead>
<tr>
<th>Title</th>
<th>Institute/company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Flow Fractionation INPT - EI Purpan</td>
<td>INPT - EI Purpan</td>
</tr>
<tr>
<td>Fruit & vegetable analysis INRA</td>
<td>INRA - SQPOV</td>
</tr>
<tr>
<td>Gas analysis INRA</td>
<td>INRA - SPO</td>
</tr>
<tr>
<td>Mastersizer FBR</td>
<td>Wageningen UR - FBR</td>
</tr>
<tr>
<td>Microbiological analysis INRA</td>
<td>INRA - SQPOV</td>
</tr>
<tr>
<td>Multi-user olfactometer INRA</td>
<td>Ecole des Mines d'Alès</td>
</tr>
<tr>
<td>PlantLipPol-Green INRA</td>
<td>UMR IATE</td>
</tr>
</tbody>
</table>

Further Information

Institutes
Hacettepe University, UNINA - DSA

Companies
Tebu-bio

References